Splitting quaternion algebras defined over a finite field extension

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Splitting quaternion algebras over quadratic number fields

We propose an algorithm for finding zero divisors in quaternion algebras over quadratic number fields, or equivalently, solving homogeneous quadratic equations in three variables over Q( √ d) where d is a square-free integer. The algorithm is deterministic and runs in polynomial time if one is allowed to call oracles for factoring integers and polynomials over finite fields.

متن کامل

enumerating algebras over a finite field

‎we obtain the porc formulae for the number of non-associative algebras‎ ‎of dimension 2‎, ‎3 and 4 over the finite field gf$(q)$‎. ‎we also give some‎ ‎asymptotic bounds for the number of algebras of dimension $n$ over gf$(q)$.

متن کامل

enumerating algebras over a finite field

‎we obtain the porc formulae for the number of non-associative algebras‎ ‎of dimension 2‎, ‎3 and 4 over the finite field gf$(q)$‎. ‎we also give some‎ ‎asymptotic bounds for the number of algebras of dimension $n$ over gf$(q)$‎.

متن کامل

On the Plesken Lie Algebra Defined over a Finite Field

Let G be a finite group and p a prime number. The Plesken Lie algebra is a subalgebra of the complex group algebra C[G] and admits a directsum decomposition into simple Lie algebras. We describe finite-field versions of the Plesken Lie algebra via traditional and computational methods. The computations motivate our conjectures on the general structure of the modular Plesken Lie algebra.

متن کامل

The Degree of the Splitting Field of a Random Polynomial over a Finite Field

The asymptotics of the order of a random permutation have been widely studied. P. Erdös and P. Turán proved that asymptotically the distribution of the logarithm of the order of an element in the symmetric group Sn is normal with mean 12(log n) 2 and variance 13(log n) 3. More recently R. Stong has shown that the mean of the order is asymptotically exp(C √ n/ log n + O( √ n log log n/ log n)) w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra and Its Applications

سال: 2020

ISSN: 0219-4988,1793-6829

DOI: 10.1142/s021949882250061x